Question Paper

Exam Date & Time: 21-Jun-2024 (10:00 AM - 01:00 PM)

2. Answer the following in 2 or 3 sentences

MANIPAL ACADEMY OF HIGHER EDUCATION

SECOND SEMESTER BSc HEALTH SCIENCES DEGREE EXAMINATION - JUNE 2024 SUBJECT: BHS-104 - CHEMISTRY II (OLD SCHEME)

Marks: 75

Duration: 180 mins.

Answer all the questions.

2. Answer the	Tonowing in 2 or o sentences	
2A)	Define the following terms in terms of phase changes: (i) Deposition (ii) Fusion	(2)
2B)	How many moles of solute particles are present in 1L of 10^{-4} M K ₂ SO ₄ ?	(2)
2C)	Define Arrhenius acid and base and mention its limitation.	(2)
2D)	Define the following terms i) Anode ii)cathode iii)oxidising agent iv) reducing agent	(2)
2E)	Define the following i) spontaneous reaction ii) entropy	(2)
2F)	At 1200 K, the reaction of hydrogen and chlorine to form hydrogen chloride is $H_2(g) + CI_2(g) \iff 2HCI(g) \text{ kc} = 7.6 \text{ x } 10^8$	(2)
	Calculate Kc for the reaction: 4/3 HCl $ ightarrow$ 2/3H ₂ (g) + 2/3Cl ₂ (g)	
2G)	Explain the effect of temperature and pressure on the equilibrium position of reversible reactions.	(2)
2H)	The combustion of 5.00 grams of $C_2H_6(g)$, at constant pressure releases 259 kJ of heat. What is ΔH for the reaction: $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(I)$?	(2)
21)	Give reason: Anions are more polarizable than their parent atoms.	(2)
2J)	Define autoionization of water. Write an expression for the same.	(2)
2K)	Ethanol is miscible in water. Give reason.	(2)
2L)	At 1000°C, cyclobutane (C ₄ H ₈) decomposes in a first-order reaction, with the very high rate constant of 100 s ⁻¹ , to two molecules of ethylene ($\begin{array}{c} C \\ 2 \\ 4 \end{array}$). If the concentration of $\begin{array}{c} C \\ 4 \\ 8 \end{array}$ after 0.050 seconds is 0.1 M what was the initial concentration?	(2)
2M)	What are the key factors that decides the spontaneity of a reaction?	(2)
2N)	Consider the reaction: CH Cl(aq) + OH (aq) ↔ CH OH(aq) + CI (aq)	(2)
/	When the reaction is started in a 1L vessel with 0.10 moles of CHCl and 0.20 moles of OH-, 0.030 $\frac{3}{3}$	(-/
	moles of CH_3OH are obtained at equilibrium. Calculate the equilibrium constant.	

3. Write a short note on the following questions

3A)

CH₃NH₂ has higher boiling point than CH₃F. Justify the statement with proper reasoning.

	i) The reaction 2NOCI(g) \rightarrow 2NO(g)+CI (g) has an E of 1.00 x 10 ² KJ/mol and a rate constant of	
	0.286 L/mol/s at 500 K. what is the rate constant at 490 K?	
3B)	(i) Define enthalpy of formation of a compound. ii) Use the data given below to find the standard enthalpy of formation of ethylene, $C_2H_4(g)$.	(3)
	Data: C ₂ H ₄ (g) + 3O ₂ (g) → 2CO ₂ (g) + 2H ₂ O(<i>l</i>) Δ H°f = -1411 kJ C(s) + O2(g) → CO ₂ (g) Δ H°f = -393.5 kJ H ₂ (g) + ½O ₂ (g) → H ₂ O(<i>l</i>) Δ H°f = -285.8 kJ	
3C)	Explain phase diagram for water.	(3)
3D)	Describe construction and working of Zn-Cu voltaic cell with reactions (Note: Zn is anode and Cu is cathode).	(3)

Answer the following questions

4A) i) Calculate the vapor pressure lowering, ΔP, when 10.0 mL of glycerol (C₃H₈0₃) is added to 500. (5) mL of water at 50°C. At this temperature, the vapor pressure of pure water is 92.5 torr and its density is 0.988 g/mL. The density of glycerol is 1.26 g/mL ii) Salts from strong bases and weak acids give basic solutions. Give reason.
4B) Draw the graph (pH vs volume of titrant) depicting the titration of 40mL of 0.01 M strong acid with 0.01M (5) i) strong base.

ii) Define equivalence point of a titration. How is it different from end point of the titration?

-----End-----